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Abstract. Monte Carlo simulatiow are presenled lor Ising dipoles on body centred cubic 
and tetragonal latlices. A finite size scaling form that includes logarithmic corrections is 
proposed and found 10 signifiwlltly improve the data collapse. With lattice parameters 
appropriate to LiHoF4 we oblain a ferromagnetic lransition temperature T, = 1.51 K 
in good agreement wilh experiment. 

1. Introduction 

Many systems exhibit Landau-like critical behaviour above a marginal dimensionality 
d'. At d = d*,  renormalization group theory leads to logarithimic corrections to the 
mean field behaviour. An example where d' = 3 is an king system of permanent 
dipoles (Larkin and Khmel'nitskii 1969, Aharony 1973) which has a physical realiza- 
tion in the compound LiHoF, (see e.g. Griffin el a/ 1980 and references therein). 
Experimental results for this system were compatible with the theoretical prediction 
of logarithimic corrections. 

Logarithmic corrections have also been studied in king systems with short-range 
interactions, for which d' = 4. Computer simulations were carried out for this system 
by Mouritsen and U a k  Jensen (1979a, 1979b) who found logarithmic corrections to 
the order parameter, in agreement with theory, for a hypercubic four-dimensional 
(4D) king lattice. A linite size scaling analysis of the same model, incorporating 
logarithmic corrections, was carried out by Lai and Mon (1990). The effect of loga- 
rithmic corrections on the high-temperature series in the 4D Ising model was studied 
by Guttmann (197s) and McKenzie (1979). 

In the physically more realistic case of 3D king models with dipolar interactions, 
simulation work was camed out by Knak Jensen and Kjaer (19S9) for parameter 
values appropriate to LiHoF,. The boundary conditions in that calculation were 
awkward (ellipsoidal sample shape). The ground state will then have a complicated 
domain structure in the thermodynamic limit (Griftiths 1968, Arrott 1965) and the net 
magnetization is diflicult to interpret. Also, with free boundary conditions finite size 
effects will be more pronounced than with periodic boundary conditions (Kretschmer 
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and Binder 1975'). The transition temperature obtained in the simulation was consid- 
crably higher than the experimentally observed temperature for LiHoF, and it  was 
not possible to determine the critical behaviour. Knak Jensen and Kjaer (19S9) sug- 
gested that the disagreement with the experimentally observed transition temperature 
was due w short-range antiferromagnetic couplings (Beauvillain el a/ 1978) which 
were not included in their simulation. One of the purposes of the present investiga- 
tion is to show that a more accurate simulation results in an estimate for the critical 
temperature that is close to  the observed value. 

More recently, a finite size scaling analysis was made for Ising dipoles on a body 
centred cubic lattice (Xu er a/ 1991). Again, no attempt was made to estimate the 
logarithmic corrections. We wish to extend the finite size scaling methods used in 
that calculation to the more realistic case of the LiHoF, lattice and to show how the 
scaling form can be modified to take into account the logarithmic corrections to the 
critical behaviour. 

The remaindcr of this paper is organized as follows. In section 2 we introduce 
our vesion of the finite size scaling methods for a system at marginal dimcnsionality, 
while in section 3 we give details and results of our simulations. Finally, a brief 
discussion is given in section 4. 

2. Finite size scaling method 

The long-range nature of the dipole-dipole interactions prevents us from applying a 
cut-oft' in the simulations. Since every spin will then interact with every other spin it 
is only possible to handle a modcrate number of spins in our Monte Carlo studies. 
Therefore. i t  is important to analyse finite size effects carefully. A powerful tool for 
this purpose is the linitc size scaling theory first introduced hy Fisher (1972); for a 
recent collection of reviews see Privman (1990). 

We define the reduced temperature 

t = (7- T,)/T, (1) 

where T, is the critical temperature. 

the total magnetization for the hulk system, when 1 > 0 
From Larkin and Khmel'nitskii (1969) we have for the scaling of the square of 

(M' )  - XIV - Nt-'(in t('13 

( A i ' )  - ( A f } ?  - :V2tlln / f ( 1 2 ' 3 .  

(2) 

while lor t < 0 

(3) 

Here 

conjecture the following finite size scaling forms 

is the number of spins and M is the total magnetization 
In order to have a finite size scaling form which agrees with (2) and (3) we 

(A4?} / :V3 / '  = f+( A'1/'tlln(t)l-1/3) (4 

{ M ? ) / . W ~ / ~  , f - ( ~ i ' l ~ i  /In ( - t p )  (5) 

for 1 > 0 and 
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for t < 0. We see that (2) and (3) are reproduced in the large-argument limit from 
(4) and (5 )  provided f-(z) - I as x - -CO and f+(x) - l/x as x + CO. We 
conclude that (4) and (5) will be valid as R”/?.l- 03. 

Our conjecture is somewhat different from the standard finite size scaling form 

P L ( t ) / ? J c u ( t )  = f ( L / Q ( f ) )  (6) 

where p r  and p ,  are, respectively, thermodynamic quantities for a system of size L 
and the asymptotic form in the bulk limit. The bulk correlation length is 5,. Brezin 
(1982) and Brezin and Zinn-Justin (1985) have made extensive studies of the validity 
of (6) from the point of view of renormalization group theory. For an isotropic 
system with short-range interactions, (6) holds when d < d‘. For d > d‘, (6) is no 
longer valid. However, one can still use a scaling of the form (6) if t, is replaced 
by a ‘thermodynamic length’ X - t-?ld (Brezin and Zinn-Justin 19S5, Binder 1990). 
At (I = d’ Brezin (19S2) argues that (6) will break down (in his case d’ = 4 for 
m4-theory) due to logarithmic corrections. 

For a system with long-range interactions the concept of length is weakened. 
In the case of an infinitely correlated system, mean field theory is exact in the 
thermodynamic limit. ‘Dimensionality’ and ‘length’ then lose their meaning. In the 
spirit of Botet cl a1 (19S2) wc introduce a ‘coherencc volume’ V,,(t) = < l l ~ ~ .  Since 
the Ising dipolar system is anisotropic the correlation lengths C r l ,  parallel, and el, 
perpendicular to the magnetization will behave differently (Aharony 1973), in fact 
near the transition tIl - <: with 

ell - t - ’  11n t p 3 .  

P,\dt)/P, = fo\‘/l,:,( t , )  ($1 

(7) 

The scaling form suggested by Botet er nl (19S2) then gives in our notation 

which is a form consistent with (4) provided that p = ( M ? ) / N ? .  This result is, 
however, nor cunsistent with (5). We need to use different arguments in the scaling 
function on the two sides of the transition. 

A different approach to ours is that of Lai and Mon (1990) who use the scaling 
form 

X ~ , . ( ~ ) / ~ , ~ ( O )  = f(t:2i1/?(ln A‘)=) (9) 

where I = 1/6 for the king model in 4D. In the limit N - ce, (2) and (3) do not 
follow from (9) and their scaling is valid when N ’ h  is small, unlike our treatment 
which is valid in the opposite limit N112t  i CO. The form (9) was derived from 
a finite size renormalization group calculation for the d = 4 king model. In the 
anisotropic dipolar case the corresponding theory has to the best of our knowledge 
not been worked out. 

3. Monte Carlo simulation 

Simulations were performed for both the body centred cubic (BCC) and body centred 
tetragonal lattices. In the latter case we choose parameter values appropriate to a 
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specific material: LiHoF,. The reason we choose this material and not, say, LiTbF,, 
is that it is generally believed that LiHoF, is a permanent dipole ferromagnet while 
LiTbF, has an induced dipole moment (Reich et ai 19%). The lattice parameters of 
LiHoF, are c = 10.75 A a = 5.175 A (Keller and Schmutz 1965). The y-value for 
the Ho3+ ion is 13.3 (Hansen et 01 1975). We take our unit cell to have c = Zu, 
while the Monte Carlo cell is cubic. We impose periodic boundary conditions with 
Ewald summation for the effective dipolee-dipole interaction. The advantages of this 
approach have been discussed by Kretschmer and Binder (1979) and Xu et a1 (1991). 
The relevant formulae are given by Jansoone (1974). We choose lattice constant and 
dipole moment in our simulation so that our ground-state e n e r a  agrees with Hansen 
e! nl (1975). We write the bare interaction between dipoles on sites i and j in the 
form 

'1 = ( ~ L ~ ~ I T c & )  (1 - 3coszeii)s;sj (10) 

where p is the dipole moment, ,rij is the distance between the spins and O,, is the 
angle benveen the vector connecting the sites and the casy axis. The spins s l  and A,  

can take on the values il. In our figures the unit of temperature is 

To = ~ i " / l ? i e o u s k n  (11) 

whcre it is assumed that c = Zit., 

Figure 1. Specific heal of 686 spins on a body 
centred tetragonal lattice calculaled by numerical 

I$ i difIerenliation of lhe internal enerw (lull curve) 
, 

I~ 

T I T O  and the fluctuation formula (triangles). 

The simulations were carried out for systems of 128,250,432,686,1024 and 2000 
spins in the case of the body centred tetragonal lattice. In the case of the UCC 
lattice wc did not simulate the largest size system. The simulations srart with the 
ferromagnetic ground state and the temperature is gradually increased. We use a 
conventional Metropolis algorithm. Since the interactions are long range each energy 
update is time consuming. At low temperatures, when the acceptance rate is low, we 
can signilicantly speed up the algorithm by updating the local fields at cach site. This 
allows us to avoid recalculating the change in the energy a t  each step which is time 



Monte Cmlo sinidations on lsing dipoles 2039 

consuming for a system with long range interactions. We check for equilibration by 
two methods. Firstly we compare specific heats calculated by the lluctuation formula 
and numerical differentiation of the energy (see figure 1 for the case of LiHoF,). 
The second method is to follow the time dependence of ( M ? )  and to check that a 
steady state has been reached. The temperature dependence of ( M ? )  is shown in 
figure 2 again for the body centred tetragonal lattice. In this plot, and in the finite 
size scaling fits to be discussed below, we have carried out simulation runs for 10-12 
different temperatures for each sample size. Between 30000 and 50000 Monte Carlo 
steps per site (Ma) were used for each size and temperature. For a system of 1024 
spins the initial relaxation time for (M') was -30 MCS in the transition region. Let 

be a simulated temperature and A T  the difference between neighbouring T;s .  
We generate two more points at Ti f AT/3  adjacent to the simulated temperatures, 
from the simulation data at T;, using the method of Ferrenberg and Swendsen (1989). 
The smoothness of the resulting curve then serves as a check of the adequacy 01 the 
simulated data. 

1 " " " " " " ' i  

Figure 2. Temperallire dependence of ( J f 2 ) 1 / 2 / N  for a body cenrred Ietmgonnl blrice. 

In order to determine the critical temperature we least-square fit :he simulated 
vilues of y = log((!l.l')/A~3/') to a polynomial of eighth order in the logarithm 
of the arguments of in (4) and (5). The procedure is repeated for a number ol 
trial values of T,. The value of the critical temperature with the smallest statistical 
quality parameter 1' was chosen. The best l i t  is shown in figure 3. We note that 
rhc scaling function for the body centred tetragonal and cubic lattices are identical 
in the asymptotic region while there is some scatter at small arguments. We also 
point out that there is only one free parameter in the fit (T,) and that the slopes in 
the asymptotic regions are *1 to a good approximation which is consistent with the 
discussion after (5). As a further consistency check we calculate the 'Binder number' 

This quantity goes to zero at high temperatures and approaches 213 for low teniper- 
atures. When U is plotted against temperatures for systems of different sizcs the 
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X 

Figure 3. Data collapse using the scaling forms (4) and ( 5 ) .  (a )  M y  centred tetragolial 
lallice will1 T, = 1.145T0, (b) BCC lattice with T, = 0.78To. The abscissa is tlle log of 
Ihe argument of the functions j*. 

curves should intersect at a fixed point value Lr = U' and T =: T, (Binder 190). 
The theoretical value of 11' from a finite-size renormalization group calculation for 
the four dimensional lsing model is 0.27 (Brezin and Zinn-Justin 1965) and we expect 
I" to be the same for the 3D lsing dipoles considered here. A plot of J.r versus 7'  is 
given in figure 4. As can be seen the intersection temperature is close to the best l i t  
temperature 1.15 and ['- is close to the theoretical value. 

~~ 
~~~~ ~ ~ ~~~~ ~ ~ 

~~ ~~~ ~ 

0 6  

Wl  , , N;lo;, , , , 

\.., . '.. . .. . '.. 
,:> 't,. ....- -__ 

TITO to the eye 

Figure 1. Tempemlure dependence of 'Binder 1111111- 
ber'. U,  for body centred relragoonal lattices of dil- 

0 8  1 2  , . ~ feient sizes The CUNU are only meant as guides 

To check the scaling behaviour further we also repeated the analysis using the 
scaling form 

( ! \P) / !YJ = f ( N Y f )  (13 
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4. Discussion 

We have shown that in the case of king dipolar interactions one can get a significant 
improvement over the mean-field result for the finitc scaling lit by including loga- 
rithmic corrections to the mean-field expressions. It is also possible to fit the data 
with non-classical exponents, h u t  this interpretation is not favoured by theory. This 
suggests (perhaps not surprisingly) that the data-collapse method can give misleading 
results when theoretical support is not available and many parameters are used. The 
same ditficulty occurs in analysis of experiments where Grilfin et a1 (19SO) could not 
unambigously distinguish the logarithmic corrections from weaWy non-classical critical 
behaviour. The best fit for the critical temperature is not very sensitive to the inclu- 
sion of logarithmic corrections, e.g. in the case of the BCC lattice our best estimate is 
Tc = 0.7ST0, which should be compared with the value T, = 0.79T0 found by Xu et 
a/ (1991) without logarithmic corrections to scaling. 

Finally, we conclude that when the calculation is carried out with only one free 
parameter, we can determine the critical temperature with good accuracy without 
going to extremes in computational effort. In the case of the body centred tetragonal 
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lattice we find for the critical temperature T, = 1.145T0. We compare this with the 
experimental transition temperature of LiHoF., by determining the value of To in 
(11). Our procedure is to equate our ground-state energy (found numerically to be 
-0.7211 kBTo) with the calculated value -0.9499 kB K of Hansen el nl (1975) for 
LiHoF,. This gives T, = 1.51 K in good agreement with the experimental results 
1.53 K of Griffin el nl (1980). Our results are thus consistent with the interpretation 
that the dipolar interactions are the dominant ones in this material. 
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